Academic Evasion at a Public University in Southern Ceará
DOI:
https://doi.org/10.14295/idonline.v19i76.4190Keywords:
Dropout at University, Higher education, Reduction of EvasionAbstract
Dropout in higher education represents one of the most difficult and persistent challenges when it comes to education in Brazil. It is a phenomenon that directly harms universities, students, as well as the entire social development scenario. The objective of this study was to learn more about the main issues surrounding dropout at the Federal University of Cariri (UFCA), its causes and consequences. The existence or not of public policies, more or less present, the economic and social issues of students, academic demands, as well as the
provision of adequate infrastructure for the operation of the various courses were also considered. Furthermore, the study discusses possible measures that have been implemented or are in progress to address the problem at hand and suggests possible solutions that could help reduce dropout rates. Among these actions are: tutoring and monitoring programs, pedagogical reinforcement, vocational guidance, as well as improvements in infrastructure and services offered. These are measures that aim to make the academic environment more welcoming and satisfactory, encouraging students to stay and complete their courses.
Downloads
References
ALONSO, Rafael Feito. Êxito escolar para todos. Revista Iberoamericana de Educacion, Madrid, nº 50, p. 173-195, 2009. DOI: https://doi.org/10.35362/rie500666
ABMES. Relatório sobre Evasão no Ensino Superior Privado no Brasil. São Paulo: ABMES, 2021.
BISHOP, C. M. Pattern Recognition and Machine Learning. Springer, 2006.
BRASIL. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira - INEP. Censo da Educação Superior 2022. Brasília: MEC, 2022.
BRASIL. Instituto SEMESP – Base INEP. Mapa do Ensino Superior no Brasil, 13ª Edição, 296p, 2023.
CRUZ, M. P. A Relação Professor-Aluno no Ensino Superior. São Paulo: Revista Brasileira de Educação, 2015.
HAN, J., KAMBER, M., e PEI, J. (2011). Data Mining: Concepts and Techniques (3rd ed.). Morgan Kaufmann.
HASTIE, T., TIBSHIRANI, R., e FRIEDMAN, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer, 2009. DOI: https://doi.org/10.1007/978-0-387-84858-7
HYNDMAN, R. J., e Athanasopoulos, G. Forecasting: Principles and Practice (2nd ed.). Otexts, 2018. DOI: https://doi.org/10.32614/CRAN.package.fpp2
JURAFSKY, D., e MARTIN, J. H. Speech and Language Processing (3rd ed.). Pearson, 2021.
KOHAVI, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence (pp. 1137-1145). Morgan Kaufmann, 1995.
MELLO, J. A Evasão no Ensino Superior: Causas e Soluções. Rio de Janeiro: Editora FGV, 2020.
MITCHELL, T. M. (1997). Machine Learning. McGraw-Hill, 1997.
NIEROTKA , Rosileia Lucia; SALATA, Andre; MARTINS, Melina Klitzke. Fatores Associados à Evasão no Ensino Superior: Um Estudo Longitudinal. Educação Superior, Profissões, Trabalho, Cad. Pesqui. v.53, p.1-28, 2023. https://doi.org/10.1590/198053149961 DOI: https://doi.org/10.1590/198053149961
PEREIRA, Fernanda Cristina Barbosa. Determinantes da evasão de alunos e os custos ocultos para as instituições de Ensino Superior: uma aplicação na Universidade do Extremo Sul Catarinense. 2003. 172f. Tese (Doutorado em Engenharia de Produção) – Programa de Pós-Graduação em Engenharia de Produção, Universidade Federal de Santa Catarina, Florianópolis, 2003.
QUINLAN, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.
RUSSEL, I.; MARKOV, Z. An Introduction to the Weka Data Mining System, ACM SIGCSE, 2017. DOI: https://doi.org/10.1145/3017680.3017821
TINTO, V. Leaving College: Rethinking the Causes and Cures of Student Attrition. 2nd ed. Chicago: University of Chicago Press, 1993. DOI: https://doi.org/10.7208/chicago/9780226922461.001.0001
UNIVERSIDADE FEDERAL DO CARIRI. Pró-Reitoria de Graduação – PROGRAD. Machine Learning para identificar os fatores que influenciam na evasão dos discentes da UFCA (2009-2023). Publicado em: 16.08.2024. DOI: 5281/zenodo.14050983. Disponível em: https://zenodo.org/records/14050983.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ivanildo Lopes da Silva, Gilmária Henllen Gondim Gomes, José Marcondes Macêdo Landim, Hidemburgo Gonçalves Rocha, Lindemberg Rocha Freitas, Gislene Farias de Oliveira

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Os autores detêm os direitos autorais sem restrições, devendo informar a publicação inicial nesta revista, em caso de nova publicação de algum trabalho.







